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Abbreviations: AP 5 adductor pollicis; BAMPS 5 bilateral ante-
rior magnetic phrenic nerve stimulation; CINMA 5 critical illness
neuromuscular abnormality; CDAP 5 compound diaphragm action
potential; CMS 5 cervical magnetic stimulation; ES 5 bilateral
electrical phrenic nerve stimulation; ETT 5 endotracheal tube;
GBS 5 Guillain-Barré syndrome; LFF 5 low-frequency fatigue;
Pimax 5 maximal inspiratory pressure; NMBA 5 neuromuscular
blocking agent; Pdi 5 transdiaphragmatic pressure; Pes 5 esoph-
ageal pressure; Pet 5 endotracheal tube pressure; Pga 5 gastric
pressure; PNCT 5 phrenic nerve conduction time; Tw 5 twitch

W hen the load placed on the respiratory muscle
pump exceeds its capacity, ventilatory failure

ensues. This situation is ultimately fatal unless either
medical therapy is able to reduce the load or me-
chanical ventilation is instituted. Preexisting neuro-
muscular disease is sometimes the primary indica-
tion for mechanical ventilation, but the more usual
indications, at least in the general ICU setting, are
nonneurologic causes, for example, trauma, surgery,
and sepsis, in patients not previously known to have
neurologic disease.

In recent years, perhaps because of the improved
delivery of supportive therapies, there has been
increasing interest in the occurrence of neuromus-
cular dysfunction as a consequence of prolonged
ICU admission. For example, a MEDLINE search
that sought citations referring to both critical illness/
care and respiratory or limb muscle/nerve yielded no
citations for the years 1966 to 1984, 3 citations for
1985 to 1990, 36 citations for 1991 to 1995, and 71
citations from 1995 onward. Disease processes af-
fecting peripheral nerves or muscles are likely to
involve the respiratory muscles and, because ade-

quate performance of the respiratory muscle pump is
a prerequisite for successful liberation from mechan-
ical ventilation,1 we would argue that assessment of
the respiratory muscle pump in the ICU is of clinical
importance.

In this article, we first review relevant normal
respiratory muscle physiology and discuss the assess-
ment of respiratory muscles in the ICU environ-
ment. We then review available data concerning
acquired respiratory muscle dysfunction in the ICU,
including critical illness neuromuscular abnormali-
ties (CINMAs). Although preexisting neurologic dis-
ease can cause ventilatory failure, this occurrence is
not considered in this article because we and others
have reviewed this area.2–4

Estimation of Load

The focus of this article is on the capacity of the
pump to respond to the load imposed by disease.
Although pump performance is our main concern, it
is relevant to consider how best to measure load in
the ICU. The load may be increased either because
the patient needs to increase minute ventilation to
ensure adequate oxygenation or because the pres-
sure changes required to achieve a given minute
ventilation are increased (for example, in acute lung
injury). Although most clinicians have an empirical
feeling for the former, measurements of the latter
are rarely made in the ICU.

The mechanical load comprises both the elastic
load of the respiratory system (its compliance) that is
present even without gas flow and airway resistance
that is related to the flow of gas. The elastic load is
measured by measuring respiratory system compli-
ance,5 while the resistive load is measured by mea-
suring airway resistance. While both of these quan-
tities can be measured fairly easily in anesthetized
and paralyzed patients, for example, using the inter-
rupter technique,6,7 they are more difficult to mea-
sure in patients who are spontaneously breathing or
are using pressure support in an attempt to wean
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from mechanical ventilation because they require
the patients to totally relax their respiratory muscles.
However, some investigators consider that the resid-
ual contribution of the respiratory muscles when the
patient attempts to relax is clinically insignificant.8 In
this situation, a clinically useful estimate of the load
placed on the respiratory muscle pump may be made
by measuring the dynamic compliance and/or the
esophageal pressure (Pes) or transdiaphragmatic
pressure (Pdi) time products during spontaneous
respiration.9 The dynamic compliance is measured as
the tidal volume divided by the Pes swing required to
generate this tidal volume. Our practice is to take the
mean of three representative breaths. The measure-
ment assumes that muscles are inactive at end
expiration and end inspiration, which clearly limits
its extrapolation to many ICU patients, especially
those with active abdominal muscles.

The Normal Respiratory Muscle Pump

Structure

The respiratory muscle pump may be considered
to have an inspiratory and expiratory component.
Although the expiratory muscles are critical for an
effective cough,10,11 their failure in isolation is not
normally considered a cause of ventilator depen-
dence. Of the inspiratory muscles, the most impor-
tant in healthy humans is the diaphragm, which
during quiet respiration accounts for 60 to 70% of
lung volume change.12 The extradiaphragmatic in-
spiratory muscles comprise the scalenes and
parasternal intercostals, which are invariably active
even during quiet breathing in healthy subjects,13,14

and the sternomastoids, which are recruited in re-
sponse to increased load.13

Physiology

Skeletal muscle (including respiratory muscle) is
controlled by impulses conducted by motoneurons
originating in the anterior horn of the spinal cord to
the motor end plate that abuts the muscle fibers.
Release of acetylcholine from the motor end plate
depolarizes the muscle cell membrane. This depo-
larization is, in turn, directed inward to the sarco-
plasmic reticulum, causing intracellular calcium re-
lease that permits the cyclic attachment and
detachment of bridges between actin and myosin
that, in turn, results in contraction of the muscle
fiber (for a review, see Jones15). This produces either
tension generation, if the muscle is kept isometric, or
shortening, if the muscle is free to move. The force
generated by muscle contraction is related to the
number of fibers stimulated, the frequency of stim-

ulation, the length of the muscle at the time of
stimulation, and the degree of freedom of movement
that it has. These considerations give rise to the
force-frequency, force-length, and force-velocity re-
lationships, respectively. Of these, the force-length
and force-frequency relationships are of greatest
clinical relevance.

An understanding of the force-frequency relation-
ship (Fig 1; see also Cooper and Eccles16) is worth-
while because it assists the understanding of the
clinical application of muscle physiology. In essence,
a single impulse traveling down the nerve results in
a single twitch (Tw) that has the two discrete com-
ponents of contraction and relaxation. If stimuli are
applied with an increased frequency such that full
relaxation has not occurred, then the addition of
tension occurs and a muscle tension greater than the
single Tw is obtained with a sawtooth appearance. If
the stimulus frequency is increased further, the Tws
fuse to create a tetanus. The plot of tension (or, for
the diaphragm, Pdi) against stimulus frequency is
termed the force-frequency curve. The shape of the
force-frequency curve is influenced by a number of
factors, including muscle length17 and fatigue.18 In
limb muscle, the tension elicited by high stimulation
frequencies (the tetanic tension) is the pressure
elicited by a maximal voluntary effort.

The force-length relationship is relevant to the
critically ill patient because lung volume is com-
monly altered by disease or by the application of
positive end-expiratory pressure. Diaphragm length
is reduced by hyperinflation,19 and as a consequence,

Figure 1. Force-frequency curve of the human diaphragm.
Reproduced with permission from Moxham et al.56
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whether assessed by volitional or nonvolitional meth-
ods, its pressure-generating capacity is dimin-
ished.20–22 As shown in Figure 2, acute hyperinfla-
tion results in a reduction in diaphragm force
generation, expressed as Pdi, in response to both
low-frequency stimuli22,23 and high-frequency stim-
uli24 as well as to voluntary maneuvers.21 Similarly,
the tension-generating capacity of the diaphragm
also is reduced in chronic and acute-on-chronic
hyperinflation, although the magnitude of this effect
remains a moot point.25–27 However, it is perhaps
less widely appreciated that the reduction in Tw Pdi
that follows both acute and chronic hyperinflation
results principally from a reduction in the ability of
the diaphragm to lower intrathoracic pressure, which
is estimated from the Pes (Fig 2).22,23,27 Moreover,
like other skeletal muscle, the diaphragm exhibits
length dependence of activation such that at high
lung volumes, there is a disproportionate reduction
in the pressure elicited by low (physiologic) stimula-
tion frequencies.24 The clinical significance of these
data is that a patient with airflow obstruction and
dynamic hyperinflation would be expected to have
ineffective diaphragm action for the three following
reasons: first, the absolute force-generating capacity
of the diaphragm is diminished; second, the force at
physiologic firing frequencies (10 to 20 Hz) is dis-
proportionately diminished; and third, the propor-
tion of tension that is translated into reducing in-
trathoracic pressure is particularly reduced.

Assessment of the Respiratory Muscles

Structurally, the respiratory muscles are skeletal
muscles28,29 and are, therefore, vulnerable to the
same diseases and physiologic processes as, for ex-
ample, the quadriceps or adductor pollicis (AP)

muscles. However, in contrast to the peripheral
muscles, their assessment can be problematic by
virtue of their location. Established techniques for
the measurement of respiratory muscle strength (as
pressure) in vivo only exist for the diaphragm,
although techniques also have been described for the
sternomastoid30 and the abdominal muscles.31,32

Similarly, electrophysiologic data are also principally
obtained from the phrenic nerve and diaphragm.

Pressure Generation

A summary of tests together with average values
and values used to exclude muscle weakness is shown
in Table 1. The function of the inspiratory muscles is
to create a negative pressure in the thorax, and, apart
from the vital capacity,33 the most widely used
measure of inspiratory muscle strength is the mea-
surement of pressure generated in the nostril34,35 or
mouth36,37 during a maximal voluntary maneuver.
These measurements are a global reflection of in-
spiratory muscle action. The only respiratory muscle
for which tension (as pressure) is commonly mea-
sured is the diaphragm. The action of the diaphragm
is to lower pressure within the thorax and to raise it
within the abdomen, and Pdi, therefore, is measured
as the difference between gastric pressure (Pga) and
Pes. An example is shown in Figure 3. The measure-
ment of Pdi has become the “gold standard” in
respiratory muscle physiology both because the dia-
phragm is the most important inspiratory muscle12

and because it is the only one in which measure-
ments of tension can be made after selective nerve
stimulation.

Clearly, the reliability of the calculated Pdi de-
pends on the accurate measurement of Pes and Pga
and also on the assumption that Pes is a true
reflection of intrathoracic pressure and Pga is a true

Figure 2. Mean data for Pdi, Pes, and Pga elicited by paired stimuli with an interstimulus interval of
10 ms (left) and by single stimuli (right) as a function of lung volume in healthy subjects. The amplitude
in this case is the difference between the relaxation pressure at different lung volumes and the peak
pressure elicited by stimulation. Error bars are the SEM. Note that in this figure, subatmospheric
deflections of Pes are represented as positive and that Pdi therefore equals the sum of Pga and Pes.
FRC 5 functional residual capacity; VC 5 vital capacity. Reproduced with permission from Polkey et al.24
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reflection of intraabdominal pressure. That Pes and
Pga are indeed valid measures was established by
studies comparing them with directly measured
pleural pressure38 and pressure measured in the
abdomen.39 A choice of the following catheters is
available for recording Pes and Pgas: air-filled40–42;
water perfused43; and solid-state.44 Catheter choice
is largely a matter of personal preference; however, it
is important that the equipment used has an ade-
quate frequency response (ie, . 10 Hz) and that the
recording equipment be calibrated before each ses-
sion. For air-filled balloons, it should be noted that
more air may need to be placed in the esophageal
balloon if the patient is, as is usual in the ICU,
supine.45 While placement of catheters is straightfor-
ward in self-ventilating patients, it can be more
difficult when a tracheostomy or endotracheal tube
(ETT) is in place. This is discussed in greater detail
below.

As well as the maximal static effort, a variety of
alternative inspiratory maneuvers46–49 are possible
and may be combined with the measurement of
nasal,50 nasopharyngeal,51 esophageal,52 or transdia-
phragmatic49 pressures. However, all these tests
require the patient to make a maximal effort and are,
therefore, of limited value in the ICU, unless the
results are unequivocally normal. Thus, even when
evaluated in nonsedated patients in the ICU, the

maximal inspiratory pressure (Pimax) was shown to
significantly underestimate inspiratory muscle
strength when repeat measurements were made by
the same or different observers.53 Some investigators
hypothesize that the value of Pimax in the ICU can
be enhanced by the use of a unidirectional valve
placed in the circuit such that the patient is allowed
to expire but inspires against an occluded airway.54

An alternative to voluntary efforts is to measure
the Pdi55,56 or mouth/ETT pressure (Pet)57 in re-
sponse to a single bilateral supramaximal phrenic
nerve stimulation, a Tw. This approach has the great
advantage that the results are independent of patient
aptitude and motivation. In theory, the most com-
plete data would be obtained by constructing the
complete force-frequency curve of the diaphragm
using bilateral trains of stimuli at different frequen-
cies. However, such stimulation, if supramaximal
(see below), is barely tolerable in humans outside the
laboratory situation. Accordingly, it seems likely that
for the foreseeable future, the majority of data will
be obtained using single stimuli. This caveat does not
apply to patients who have implanted diaphragm
pacemakers who can tolerate tetanic stimuli given via
the pacemaker,58,59 indicating that the problem with
tetanic stimulation is, at least in part, the stimulation
mode. Repetitive magnetic stimulators are currently
being developed,31 and their use to construct in vivo

Table 1—Overview of Some Currently Available Tests of Respiratory Muscle Strength*

Test Advantages Disadvantages
Lower Limit of

Normal, cm H2O Study/yr

Pimax Quick, no catheters; normal values
in large series

Inaccurate in ICU 60 (F)
80 (M)

Enright et al37/1994

Pemax Quick, no catheters; normal values
in large series

Inaccurate in ICU 120 (F)
150 (M)

Enright et al37/1994

SNIP Quick, no catheters Not suitable for patients using ETT
or tracheostomy

60 (F)
70 (M)

Uldry and Fitting35/1995

Sn Pes Direct measure of intrathoracic
pressure

ETT or tracheostomy must be
occluded; requires cooperative
patient; catheters required

60 (F)
70 (M)

Laroche et al52/1988

Sn Pdi Direct measure of Pdi ETT or tracheostomy must be
occluded; requires cooperative
patient; catheters required

70 (F)
80 (M)

Miller et al49/1985

BAMPS-Tw Pdi Independent of motivation; direct
measure of diaphragm
contractility

ETT or tracheostomy must be
occluded; lung volume and
potentiation considerations;
catheters required

20 (M and F) Mills et al74/1996

BAMPS-Tw Pet Independent of motivation; direct
measure of diaphragm
contractility

ETT or tracheostomy must be
occluded; lung volume and
potentiation considerations

20 (M and F) Mills et al74/1996

UMS-Tw Pdi Independent of motivation; direct
measure of diaphragm
contractility; can diagnose local
etiologies (eg, postsurgical)

ETT or tracheostomy must be
occluded; lung volume and
potentiation considerations;
catheters required

10 (L)
6 (R)

Mills et al75/1995

*Pemax 5 maximal expiratory pressure; SNIP 5 sniff nasal inspiratory pressure; Sn 5 sniff; F 5 female; M 5 male; L 5 left hemidiaphragm;
R 5 right hemidiaphragm.
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force-frequency curves of the diaphragm in the
future cannot be ruled out.

Our current preference is to measure Tw Pdi.
Unfortunately, the placement of esophageal and
gastric balloons in intubated patients is not always
possible without the use of sedative drugs (although we
have found placement under direct vision using a
bronchoscope positioned in the pharynx a viable alter-
native in a minority of patients). In this situation, the
investigator must sedate the patients using drugs the
effect of which on diaphragm contractility is unknown
and then either accept this limitation of the data or wait
for the effects of the drugs to wear off. When it is not
possible to pass balloon catheters, an alternative is to
measure the Tw Pet by occluding the ETT at end
expiration. We have constructed a valve for this pur-
pose that synchronizes with our nerve stimulators.60

Although this approach has clear attractions, Tw mouth

pressure (and, it is assumed, Tw Pet) is numerically
similar to Tw Pes, rather than to Tw Pdi.61 The
disadvantage of this approach is that if Tw Pdi is small,
then, because Tw Pes is smaller than Tw Pdi (usually by
50 to 60%, depending on the stimulation modality), Tw
Pet may be harder to measure accurately because the
noise-to-signal ratio will be large. Similarly, increases in
lung volume, as occur for example if positive end-
expiratory pressure is applied, disproportionately influ-
ence Tw Pes and, therefore, Tw Pet. For the bilateral
anterior magnetic phrenic nerve stimulation (BAMPS)
technique, the diminution of Tw Pdi with increasing
lung volume is 0.3 cm H2O per percentage of vital
capacity.24 Similar results were obtained using cervical
magnetic stimulation (CMS).23

The choice of the phrenic nerve stimulation tech-
nique is governed by the desire to achieve supra-
maximality, in that an increase in the size of the
stimulus results in no increase in the size of the
action potential, implying that all the nerve fibers
have been recruited. The importance of the stimulus
being supramaximal is that the tension generated by
a single stimulus then enjoys a constant relationship,
usually around 0.2 in mammalian muscle,62 with the
maximal tetanic tension, which is the true strength of
the muscle. In humans, a comparable ratio, that of
Tw Pdi to maximal voluntary effort Pdi, has been
reported between 0.23 63 and 0.24 64 for CMS and
0.24 for BAMPS.24 The surface markings of the
phrenic nerve were known to Duchenne,65 and
electrical phrenic nerve stimulation was even pro-
posed as a means of emergency ventilatory support
in the postwar years.66 Nevertheless, with a few
exceptions (see, for example, Dureuil et al67), accu-
rate pressure measurements using bilateral electrical
phrenic nerve stimulation (ES) have proved difficult
in the ICU. Indeed, even in healthy subjects, the
technique is sufficiently imprecise that the lower
limit of normal overlaps with diaphragm weakness of
both mild and moderate severity.68 The main prac-
tical difficulties with ES relate to the need to identify
and maintain the precise location of the phrenic
nerve with the stimulating electrode, which is, in
turn, required to maintain supramaximality. As a
consequence, obesity, anatomic deformity, and in-
dwelling venous catheters present clear obstacles.
Additionally, the repeated stimuli needed to confirm
the position of the stimulating electrode are painful
and may lead to Tw potentiation (for more details
see Mador et al69 and Wragg et al70).

In 1989, Similowski and colleagues71 successfully
applied the technique of magnetic nerve stimula-
tion72 to the phrenic nerves.71 The principle of
magnetic nerve stimulation is that electrical energy
(up to 3,000 V) from the main supply is stored in a
capacitor that is rapidly (in 0.1 ms) discharged by the

Figure 3. Nomenclature in the respiratory muscles explained.
The pressures elicited by ES in a patient with severe COPD are
shown (modified from the example in Polkey et al27). For a sniff
maneuver, the deflections would still be measured from baseline
to peak, and the quantities measured would then be sniff Pdi,
sniff Pes, and sniff Pga.
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operator through a coil creating a magnetic field.
This field, by virtue of Faraday’s law, causes current
to flow in conducting structures. Thus, provided that
the field is sufficiently strong and the phrenic nerves
lie within the field, a supramaximal response is
obtained. In ambulant patients, the measurement of
Tw Pdi following CMS has proven to be of clinical
value in the assessment of diaphragm strength63 and
has permitted studies of diaphragm function in
patients with advanced respiratory, cardiac, and neu-
rologic disease.11,27,73

CMS requires the placement of the coil behind
the cervical spine and may, therefore, be difficult in
ICU patients, who are commonly supine and instru-
mented. Our current practice in the ICU, therefore,
is to use BAMPS so that two figure-eight coils are
placed anteriorly over the phrenic nerves. This tech-
nique may be used bilaterally to assess global dia-
phragm function74 or, especially if an iatrogenic
etiology is postulated, unilaterally to assess hemidia-
phragm function.75,76 Our current practice is to study
the patient in the supine or semirecumbent position
after a 20-min period of quiet respiration or ventila-
tory support. The stimulators are linked both to the
recording system and to the ETT occlusion valve.
Thus, when the operator determines that the patient
is at end-expiration (by inspection and from the Pes
tracing), a foot pedal is pressed that starts a record-
ing computer and causes a balloon in the occlusion
valve to be inflated. After a latent period of 50 to 100
ms, the stimulator is triggered by the recording
computer, and at an appropriate interval (ie, approx-
imately 1 s) the balloon valve deflates, allowing
respiration to resume. We give stimuli over the
surface landmarks of the phrenic nerve in different
positions with differing coil orientations. The site of
maximum response is marked on the skin, and the
process then is repeated on the contralateral side.
The actual recording of Tw Pdi is then made from a
minimum of five stimuli administered from two
stimulators (and two coils) arranged to fire simulta-
neously in response to the trigger signal from the
computer (Fig 4). Because BAMPS at 100% of
stimulator output is routinely supramaximal in
healthy subjects, we do not, for clinical evaluations,
formally demonstrate supramaximality. Neverthe-
less, if this is desired for academic reasons, we
administer a minimum of five series of stimuli at
60%, 70%, 80%, 85%, 95%, and 100% of maximum
stimulator output in random order.

Electrophysiology

Electrophysiologic data can be useful to assess the
cause and prognosis of a phrenic nerve injury, but

they cannot inform the investigator about the pres-
sure-generating properties of the muscle.

The simplest measurement is that of phrenic
nerve conduction time (PNCT). The PNCT is tradi-
tionally measured from surface electrodes in re-
sponse to unilateral electrical stimulation.77 How-
ever, although the PNCT is prolonged in
neuropathies that are predominantly demyelinating,
it may be preserved in neuropathies that are pre-
dominantly axonal despite substantial diaphragm
weakness. Thus, in the relevant and frequently stud-
ied case of diaphragm dysfunction after cardiac
surgery, differing results have been obtained with
respect to the PNCT.78–81 Nevertheless, in experi-
enced hands, a complete absence of a surface action
potential in response to electrical stimulation of the
phrenic nerve can be taken as evidence of iatrogenic
injury if there is a plausible clinical history (for
example, liver transplantation surgery).82 However,
when using the ES technique, it is important that
costimulation of the brachial plexus is avoided, oth-
erwise the action potential recorded from surface

Figure 4. Bilateral anterior magnetic stimulation of the phrenic
nerves in a patient with difficulty weaning from mechanical
ventilation.
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electrodes may originate from muscles other than
the diaphragm.83 This problem is compounded if the
phrenic nerve is stimulated using a magnetic tech-
nique.84

More complex neurophysiology of the phrenic
nerve requires needle electromyography of the dia-
phragm and is possible only in highly specialized
units,85 but it may be useful if the results indicate
clearly that the etiology is primarily axonal or pri-
marily demyelinating. The former is favored by a
normal or slightly prolonged PNCT coupled with a
reduced action potential amplitude and the presence
of signs of denervation (for example, fibrillation
potentials and positive sharp waves). Evidence of a
marked prolongation of PNCT or conduction block
favors demyelination. In the future, it is possible that
reliable data concerning PNCT and compound mus-
cle action potential amplitude may be more widely
available using unilateral magnetic stimulation and
esophageal electromyography,76,86 but, at present,
esophageal electrodes are not readily commercially
available. Finally, repetitive stimulation combined
with the recording of the diaphragm action potential
may be useful in the assessment of the neuromuscu-
lar junction. In the ICU context, this technique may
be useful if the persistence of neuromuscular block-
ade is suspected.87

Quantification of peripheral muscle strength in
the ICU, except for simple clinical examination, is
uncommon. It is possible to assess the contractile
properties of the AP muscle using electrical stimu-
lation of the ulnar nerve in critically ill patients,88,89

but not all investigators have found this technique
easy to apply.90 We have recently demonstrated that
the Tw tension elicited by supramaximal magnetic
stimulation of the ulnar nerve is a reproducible
nonvolitional measure of AP strength that can be

used in the operating theater and ICU.91 Similarly,
the technique of magnetic stimulation of the femoral
nerve to assess quadriceps function92 can be adapted
for use on the ICU.93 The relevance of peripheral
muscle function to respiratory muscle function in the
critically ill patient is presently undetermined, but
conceptually the identification of peripheral muscle
weakness could serve as a (more accessible) marker
of respiratory muscle weakness. Furthermore, be-
cause these muscles have important functions, ther-
apy aimed at preserving and/or restoring their
strength is inherently of interest because it might
reduce rehabilitation needs after the patient’s dis-
charge from the ICU.

Acquired Respiratory Neuromuscular
Dysfunction in the ICU

As previously noted, preexisting neurologic causes
of neuromuscular dysfunction are not covered in this
review; however, a summary of their causes is shown
in Table 2.

CINMAs

Although Clarence Olsen94 reported in 1956 that
peripheral nerve lesions could complicate a variety of
critical illnesses, systematic studies have been under-
taken only relatively recently. The reported studies
fall into the following two main groups: those that
study unselected ICU patients with prolonged hos-
pital admissions or features of multiorgan dysfunc-
tion95–102; and those that study patients with clinical
features suggestive of neurologic abnormalities103–109

or with specific diagnoses.110–112 In addition, re-
ported studies have used a variety of investigational
techniques and definitions to report the data. Nev-

Table 2—Disease Processes Causing Muscle Dysfunction in the ICU

Disease Location

Disease Processes

Preexisting Acquired

Nerve Motor neuron disease; Guillain-Barré syndrome; iatrogenic
(eg, surgery or central venous access); chronic idiopathic
demyelinating polyradiculoneuropathy; toxins (eg, lead or
organophosphates); drugs (eg, vincristine); porphyria;
diphtheria; vasculitis; hereditary tyrosinemia; lymphoma;
poliomyelitis

Critical illness polyneuropathy (axonal or
demyelinating); iatrogenic (eg, surgery
or central venous access)

Neuromuscular junction Myasthenia gravis; anticholinesterase overdose;
antiarrhythmic drugs; Eaton-Lambert syndrome; botulism;
envenomation; shellfish poisoning; tick paralysis

Persistence of neuromuscular blockers;
antiarrhythmic drugs

Muscle Congenital myopathies/dystrophies; polymyositis; electrolyte
disorder (eg, hypokalemia or hypomagnesemia); acid
maltase deficiency; circulatory collapse; barium
intoxication; endocrine disorder (eg, hypothyroidism)

Critical illness myopathy; electrolyte
disorder (eg, hypokalemia or
hypomagnesemia); steroid myopathy;
neuromuscular blockage-induced
myopathy
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ertheless, there is a consensus that among such
patients, neurologic abnormalities are common; for
example, Spitzer et al98 concluded that in “difficult-
to-wean” patients, 62% had neuromuscular disease
sufficiently severe to account for ventilator depen-
dency.

The principal reported abnormalities are the fol-
lowing: axonal neuropathy; demyelinating neuropa-
thy; neuromuscular junction transmission defects;
and myopathy. The identification of unsuspected
preexisting neurologic disease is a recognized finding
in these studies, and this in itself should be consid-
ered as a reason to investigate the difficult-to-wean
patient. Clinical examination of the ICU patient is
difficult, but it should be possible to identify muscle
wasting, fasciculation, and the presence or absence
of tendon jerks. The preservation of tendon reflexes
suggests the absence of abnormalities of the motor
nerves but is otherwise nonspecific.95

The most commonly reported abnormality is an
axonal neuropathy.95,99,107,111,113,114 Classically, an ax-
onal neuropathy is characterized by the finding of
preserved latencies with diminished action poten-
tials; 2 to 3 weeks after the start of the process,
fibrillation potentials and positive sharp waves may
be observed.115 However, these features also can
occur in myopathic processes,112 and the distinction
between axonal neuropathy and myopathy may be
difficult.

In demyelinating polyneuropathy, the conduction
time is prolonged while the action potential may be
reduced or normal in amplitude.100 Some investiga-
tors treat this syndrome as Guillain-Barré syndrome
(GBS) on the basis that the clinical and electrophysi-
olgic features resemble GBS.107 However, in the
largest series, in which 11 cases of GBS were
identified,106 only one patient had had weakness
before admission to the ICU, and, therefore, in this
context GBS could be considered as a complication
of critical illness.

Myopathy also can be acquired in the ICU. Most,
but not all98 investigators consider it to be less
common than axonal neuropathy, although, because
of the similarity of their electrophysiolgic features,
separating the two entities can be difficult. It could
be argued that cases identified in the literature as
myopathic are in fact axonopathic; however, the
argument that myopathy occurs in some patients is
firmly supported by histologic and biochemical da-
ta105,112,116 as well as by the observation that some
patients have muscle that is inexcitable even with
direct stimulation.117

Neuromuscular transmission defects also are rec-
ognized in the ICU. Occasionally, these can be
because of previously undiagnosed myasthenia gra-
vis, especially if the myasthenia has an atypical

presentation.118 However, in the ICU, alternative
causes are the persistence of neuromuscular block-
ing agents (NMBAs)106,119 or other drugs.87

Only a few studies97,106,107,110,111 have investigated
the electrophysiology of the respiratory muscles in
the ICU, and to our knowledge, no studies have
systematically assessed respiratory muscle strength.
Zochodne et al111 studied 17 patients with critical
illness polyneuropathy. Only six of these had normal
results in phrenic nerve conduction studies, but the
nature of the phrenic nerve abnormalities is not
described in detail. Witt et al97 documented a reduc-
tion of the compound diaphragm action potential
(CDAP) that had a significant correlation with the
severity of the peripheral polyneuropathy. Interest-
ingly, a few patients had normal CDAP amplitudes
despite peripheral polyneuropathy, and conversely in
some cases normal peripheral nerve function was
observed despite a reduced CDAP amplitude. Ma-
her et al107 studied 40 patients in whom an (ac-
quired) neurologic cause for being “difficult to wean”
was suspected. The prevalence of critical illness
polyneuropathy was high (83%), and just under half
of these patients had a bilateral phrenic neuropathy;
bilateral phrenic neuropathy was not observed in the
absence of peripheral polyneuropathy. Other signif-
icant diagnoses were unilateral phrenic neuropathies
(in one case after surgery) and neuromuscular trans-
mission defects. Zifko et al110 identified either an
abnormal phrenic nerve conduction time or CDAP
amplitude in 77% of 62 patients with proven critical
illness axonal polyneuropathy. Moreover, patients
with a reduced CDAP had a longer requirement for
mechanical ventilation than those without (62 vs 55
days, respectively). However, the difference was
modest and did not reach statistical significance.
Nevertheless, patients with critical illness axonal
polyneuropathy involving nonrespiratory nerves are
likely to require longer periods of ventilatory support
than those without.100 Similarly, such patients are
likely to require more prolonged rehabilitation than
those without120 or, even, those with myopathy.106

Etiologic Factors in CINMAs

The causes of CINMAs are less well-established
(for a fuller discussion see DeJonghe et al121 and
Bolton122); however, multiple organ dysfunction, of-
ten but not always sepsis related, does seem to be a
recognized risk factor.97 Antibiotics, and in particular
aminoglycosides, were exonerated relatively early.97

NMBAs and corticosteroids are two agents that have
raised particular concern, although there are clear
data that CINMAs can occur without exposure to
these drugs.95,99,105–107
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Corticosteroids

Corticosteroids are recognized to cause a prox-
imal myopathy123 that also can occur in ICU
patients,116,124 but they are not necessary for the
development of critical illness polyneuropathy.110

Some groups consider the respiratory muscles to
be vulnerable to corticosteroids,125 but we could
not confirm this in a study of diaphragm strength
in patients with severe Cushing’s syndrome.126

NMBAs

One of the first cases of weakness after ICU
admission was reported in a patient who had re-
ceived both NMBA and corticosteroid therapy for
acute asthma,127 and the danger of this combination
has been subsequently confirmed in larger stud-
ies.128,129 Electrophysiologically, the data suggest
that the weakness is because of a combination of
axonopathy and myopathy.128 Moreover, it should be
noted that in patients with renal failure, accumula-
tion of the 3-desacetyl metabolite of vecuronium can
occur, leading to a persistent neuromuscular junc-
tion transmission defect.119,130

Nutrition and Catabolism

Severe malnourishment can result in respiratory
muscle weakness,131 but it is less clear that this is so
for patients with more modest decrements in body
mass index.132 Skeletal muscle catabolism may con-
tribute to critical illness myopathy.133 Critically ill
patients exhibit hypermetabolism134 with reduced
rates of tissue protein synthesis despite nutritional
support.135 Electrolyte disturbance is recognized to
impair tension generation in skeletal muscle, and
glucose-potassium loading is reported to cause a left
shift in the force-frequency curve of the AP muscle
in postoperative patients.88

Disuse Atrophy

In human limb muscle, immobilization causes a
reduction in maximal voluntary contraction force,136

but a period of . 3 weeks is required for changes to
occur.137 However, complete paralysis of the depen-
dent muscle leads to more profound weakness.
Anzueto et al138 studied three baboons before and
after 11 days of complete neuromuscular blockade
and observed a 25% reduction in maximal Pdi.
Interestingly, in rats, 48 h of heavy sedation was
sufficient to produce diaphragm atrophy.139 Clearly,
such experiments would be unethical in humans, but
Ayas et al140 had the opportunity to study the
function of both hemidiaphragms in a phrenic pace-

maker-dependent patient in whom the left pace-
maker had to be removed because of infection. The
patient continued to receive 30 min/d of pacing to
the right hemidiaphragm, and this stimulation was
sufficient to prevent thinning of the diaphragm, as
judged by ultrasound. Thus, available data suggest
that atrophy of the respiratory muscles is likely to be
a problem only if complete neuromuscular blockade
is used for a prolonged period, which is an uncom-
mon clinical scenario.

Fatigue

Fatigue of human skeletal muscle is defined as a
loss of force-generating capacity resulting from ac-
tivity under load that is reversible by rest.141 A
variety of techniques have evolved for the detection
of respiratory muscle fatigue including, notably,
measurement of the high/low ratio of the power
spectrum of the diaphragm electromyogram142 and
maximum relaxation rate.143 Data from ICU patients
have been produced with both of these tech-
niques,144,145 but because neither of them strictly
addresses the definition of fatigue, the interpretation
of these data is problematic. Our view is that they
confirm the presence of excessive loading in patients
having difficulty weaning from mechanical ventila-
tion, and this is consistent with the observation of
abnormal central respiratory drive in similar patients
obtained both from needle electromyogram studies
of the diaphragm (eg, Maher et al107 and Zifko et
al110) and of increased tracheal occlusion pressure.146

The type of fatigue that is of greatest potential
relevance to clinical practice is low-frequency fatigue
(LFF)18 in that activity under load results in a loss of
force generated in response to low stimulation fre-
quencies (eg, 10 to 20 Hz). LFF is of interest both
because these are the typical firing frequencies of
respiratory muscle motor units in humans147,148 but
also because, unlike other forms of fatigue, the
effects may last $ 24 h.18,92,149 Ideally, the demon-
stration of LFF requires the construction of the
force-frequency curve. However, although it is pos-
sible to construct force-frequency relationships of
the diaphragm in highly motivated healthy subjects56

using tetanic electrical stimulation, the technique is
impracticable in patients (although interest remains
in deducing the force-frequency curve by paired
stimulation24,150,151). Instead, the pressure elicited by
a single supramaximal stimulus (ie, the Tw Pdi) is
used as a substitute. Using this technique, diaphrag-
matic LFF has been demonstrated in healthy sub-
jects in the laboratory after resistive loading,149

maximal voluntary ventilation152,153 and whole-body
exercise,154 and the technique also may be adapted
for the abdominal muscles.155 However, few studies
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have investigated the presence of fatigue in clinical
situations using phrenic nerve stimulation tech-
niques, and the two studies that have been reported,
failed to demonstrate LFF in COPD patients. 156,157

The application of magnetic stimulation allows the
study of patients with critical illness and, although
this question is the subject of current research by a
number of groups (including our own), to our knowl-
edge, no data have yet been reported. Trials of
spontaneous ventilation are currently considered the
optimal method of weaning from mechanical venti-
lation,158 and, because the possibility of respiratory
muscle fatigue after such trials cannot be excluded, it
seems logical to propose that such trials not be
conducted more frequently than daily.

Conclusion

Once cardiac and pulmonary causes have been
excluded, prolonged ventilator dependency is most
likely to be due to undiagnosed acquired neuromus-
cular disease. The use of neuromuscular blocking
drugs and corticosteroids should be kept to the
minimum required for the management of the pri-
mary condition. Hitherto, demonstrating respiratory
muscle dysfunction in critically ill patients required
specialist neurophysiologic investigation, but the ap-
plication of the recently developed technique of
magnetic stimulation of the phrenic nerves should
allow most specialist pulmonologists and intensivists
to confirm or refute this diagnosis when necessary.
We recommend that respiratory muscle strength be
measured in patients with . 7 days of ventilator
dependency in whom a cardiac or respiratory cause
is not identified. If respiratory muscle weakness is
identified, electrophysiolgic assessment by a special-
ist is indicated to exclude the treatable conditions of
neuromuscular transmission defect and GBS. Fur-
thermore, we predict that the application of such
techniques in academic studies will allow further
understanding of the impact of CINMAs on the respi-
ratory muscles. Similarly, by determining the impor-
tance, or otherwise, of low-frequency respiratory mus-
cle fatigue in critically ill patients, it is hoped that more
evidence-based weaning strategies can be studied in
future trials.
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